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We propose a Monte Carlo method for estimating the correlation exponent of 
a stationary ergodic sequence. The estimator can be considered as a bootstrap 
version of the classical Hill estimator. A simulation study shows that the method 
yields reasonable estimates. 
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1. INTRODUCTION 

Over  the past  decade there has been much interest  in the asymptot ic  
behavior  of dynamica l  systems, in par t icular  in detect ing "chaot ic"  
behavior  of these systems and testing for the existence of "strange" or  
"fractal" a t t rac t ing sets. Dimensions  of different type such as the Hausdorff,  
Ren~,i, or  corre la t ion dimensions are appropr i a t e  quant i ta t ive  measures.  

The present  paper  is entirely devoted to the statistical es t imat ion of 
the corre la t ion  exponent.  I t  is our  aim to propose  a Monte  Car lo  method  
for es t imat ing it. 

We start  with a s ta t ionary  ergodic sequence X, X1, X2 .... of d-dimen- 
sional r andom vectors with marginal  d is t r ibut ion F which is supposed to 
be cont inuous  and which coincides with the invar iant  probabi l i ty  measure  
of the sequence. We will suppose in the sequel that  d>~ 1 is fixed. F o r  
example,  the r andom variables Xi can be thought  of as the vectors X ; =  
(X~ .... , X~+d_~),  i =  1,2 ..... which are constructed from a one-dimensional  
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stationary ergodic sequence (Xi), i.e., the Xi are obtained by embedding the 
sequence (Xi) in a d-dimensional phase space. In our simulation studies we 
will construct the sequence of the Xi in this way. 

Let Y and X be independent and identically distributed (lid) with 
common distribution F, 

C ( e ) - - P ( I X - Y I  ~<e), e > 0  

Here I-I denotes any norm in the Euclidean space .~d. We will suppose that 
the limit 

D = lira log C(e) 
, : -  o l o g  e 

exists finite or infinite and call it the colv'elation e.x'ponent of the sequence 
(Xi) or of F. 

The estimation of D would be a standard statistical problem if we had 
a sequence of lid random variables Z~, Z2 .... with the same distribution 
as I X - Y J  and such that P ( I X - Y I  ~<x) is a regularly varying (at zero) 
function of x. This can be handled by so-called tail estimates which are 
well studied in the literature (see Section 2). In many cases of interest the 
observations X~, X2, ... are dependent, so that it is not possible to construct 
lid Zi from them. 

In the literature, the usual statistical procedure for estimating D is 
the Grassberger-Procaccia method. ~s~ Since one does not know the 
probabilities C(e), one has to work with an approximation. Usually C(E) is 
replaced by the nearest-neighbor statistic 

C, , (e) - - - -  Z I ( IX~-Xjl~<e)  
I I -  i , j = l  

where I( . )  denotes the indicator function. For e fixed this is a U-statistic 
with kernel I ( I x - Y l  ~< ~) and for fixed n i't is a special empirical distribu- 
tion function of U-statistic structure. It is known It71 that 

C,,(~) --, C(~) a.s. 

(a.s. stands for almost surely) and using the same ideas as for the proof of 
the classical Glivenko-Cantelli theorem, it is not difficult to see that C,,(e) 
even converges uniformly for ~ > 0  with probability one. Denker and 
Keller 151 proved the asymptotic normality of a vector C,,(e~), i =  1 ..... k, 
at distinct a~ provided the X~ satisfy certain mixing conditions. The 
Grassberger-Procaccia method determines an estimate of D by plotting 
the values log C,,(e) against log e for a variety of e values and then by 
calculating the slope of the so-defined curve in a sufficiently broad linear 
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region. This can be done by linear regression techniques, and so we will 
sometimes refer to the Grassberger-Procaccia  method as a linear regression 
procedure. Cutler ~3~ showed the asymptotic normality of a least squares 
estimator of D based on the vector log C,,(~), i =  1 ..... k, at distinct ~i and 
under the same conditions as in Denker and Keller. ~ 

Since C(e) is replaced by C,,(~), one would need an estimate for the 
error in this approximation.  For  X~ iid the central limit theorem for 
general U-statistics gives an estimate of the error of order 1/x/~. In the case 
of dependence in which we are mainly interested nothing seems to be 
known. But one is not actually interested in an error estimate for ~ fixed, 
but for an e which tends to zero in dependence on n. Since D is defined as 
a limit for ~ ~ 0, one has to apply the same limiting procedure for C,,(e). 
But C,,(~) is naturally equal to zero for sufficiently small ~. So one has to 
find a reliable region of ~ values (depending on n) such that C,,(e) can be 
taken as a surrogate of C(e). For  some work concerning the choice of the 
E region we refer to Grassberger. ~9~ 

The statistical estimator of D which we propose is based on the obser- 
vation that we can write 

= f, dr,,(.,-) dv, ,o,) ,  = aV(.,-) 
x - yl  ~< e Ix - . v [  ~< ~: 

where F,, is the empirical distribution based on the observations X, ..... X,,. 
On the one hand, we know that C,,(e)-~ C(~) a.s. as a consequence of the 
fact that F,,--* F a.s. in the uniform metric (which is a corollary of the 
ergodic theorem). Thus it might be worthwhile to work with random 
variables which are (conditionally) iid with distribution F,,. This is the 
basic idea of the celebrated bootstrap which has become popular  in 
statistics since Efron's 171 paper. We propose to apply the bootstrap idea to 
the well-known Hill estimator, which is a special tail estimator. 

Our  paper is organized as follows: In Section 2 we recall the notion of 
the Hill estimator. In Section 3 we introduce a Monte Carlo method for 
estimating the correlation exponent D. In Section 4 we consider a small 
simulation study in order to show the consistency of the estimator. In 
Section 5 we give some general comments about  the method. 

2. THE HILL EST IMATOR 

Suppose that Z, Z l ,  Z_, .... are iid nonnegative real-valued random 
variables such that 

P(Z <~ x) = L(x-  ')x" (2.1) 
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for a slowly varying (at infinity) function L [i.e., L(cx ) /L (x )  ~ 1, x ~ c~, 
c > O] and a positive number  a. It is an impor tant  problem to estimate a 
given a sample 

Z l ,  ..., Z,, 

A s tandard est imator  of a is due to Hill: t*4~ Let 

Z t l~<  .-. ~< Z~,,) 

denote the order statistics corresponding to the sample. For  m >/1 define 

), 
Hm,,= - m  l~ Z(~) + l~ Z(m+ ~) 

i = I  

where log denotes the natural  logarithm. Under  the conditions above and 
if m = m ( n ) ~  oo, m = o ( n ) ,  it is shown, e.g., in Mason,  t161 that  the Hill 
est imator  is a weakly consistent es t imator  of a. Moreover ,  if m = n ~ for 
some y ~ (0, 1) one can show the strong consistency and asymptot ic  nor- 
mality of H,,,, (see, e.g., refs. 16, 10, 4, 13, 1, and 6). Hall  tt~ derived an 
optimal  y for certain Z with a special probabil i ty behavior  at zero. 
Moreover ,  it is known from the literature that  H .... is a max imum-  
likelihood est imator  based on the m smallest z-values, and it is therefore 
opt imal  in a certain sense. For  dependent  Z,. the only paper  we are aware 
of is due to Hsing, ~ls) who proves the consistency and asymptot ic  nor- 
mality for moving average type Z;. In this case and in the iid one it is 
known that  one needs huge data  sets in order  to derive a reasonable 
estimate of a. This is natural  because only the smallest order statistics of 
the Zi  will contribute to the est imation of the parameter  a; in view of (2.1) 
only very small x will determine the value of a, and in a sequence of idd 
(Z~) it is quite a rare event that  one of the Zi  is smaller than a given 
level x. 

It is known from the literature that, in general, the es t imator  cannot  
be improved by taking more  and more  order statistics into account  ("let 
the small values speak for themselves"). 

In order to explain the particular form of the Hill est imate we give two 
arguments:  

A. Suppose we know precisely that  

P ( Z ~ x ) = x  ~ x<<.e (2.2) 

for a known value of e. Then the maximum-l ikel ihood est imator  for 1/a is 
given by 

t! 

- 1 ,,,l~l - 1 ,~1 log(Z;) I(Zi  ~ e) Z log z . )  = m(,)  
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where 

m ( e ) =  ~. I(Zi<<.e)=card{i: Z i ~ e  } 
i=l 

Notice that this estimator has been proposed by Takens. (tg) In practice 
we rarely know the value of e. Therefore we have to "search" for an 
appropriate e such that (2.2) approximately holds. Thus it seems 
reasonable to let e tend to zero together with the sample size n, i.e., e,, ---, O. 
From the strong law of large numbers we know that 

m(e)~nP(Z<~e) a.s., n ~  

and if e = e,, ~ 0 then we have to expect that  m,,/n = m(e,,)/n--* O~ But we 
still have to assume that m,, ~ ~ .  This explains the two conditions on m 
above. We mention that 1/H ..... is the precise maximum-likelihood 
estimator of 1/a if the likelihood function is based on the m smallest order 
statistics Z~  I, ..., Zt,,,~. 

B. To justify the random centering for 1/H .... we give a standard 
argument based on regular variation. Under  (2.1) we have for y > 0 

l - G ( y )  = P ( I / Z  >>. y )  = P(Z <~ 1/),) = L ( y )  y - 6  

Observe that dominated convergence and the uniform convergence 
theorem for regularly varying functions t2~ imply that 

i, ~ ~ 1 -  G(tu)du l ~ 1 7 6  , 1 ~ ~  u 

~ du 1 
u . . . . .  , t ~  oo (2.3) 

1 u a 

Now, let 

1 I <~y y e ~  
G,,(y) = n i= i 

denote the empirical distribution function corresponding to the sample 
I/Z1 ..... 1/Z,. The function G,, is a nonparametr ic  estimate of G. If we 
replace G in (2.3) by G,, and if we take t = 1/ZI,,I, then we obtain 

i ~ log y-log(1/Z~m)) 
l,z,o, da,,(y) 

which is precisely 1/Hm,,. Thus regular variation of P(Z<~x) is another 
argument for Hill's estimator. 
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Dependence of the observations X+ is a major difficulty for applying 
the Hill estimator to the data z,=lx2,-x2;_tl. Even if one does not 
consider the differences of two consecutive observations, the quality of the 
estimate cannot be expected to improve essentially. This can also be seen 
by simulations. 

In the following section we will introduce a sequence of pseudo- 
independent data constructed from the X~ and apply the Hill estimator to 
them. 

3. THE M O N T E  CARLO M E T H O D  

We now consider a sample X t ..... X,, as introduced in Section 1. As 
mentioned in Section 2 we need iid data in order to apply the Hill 
estimator. For dependent X~ we cannot expect that the Hill estimator 
works. Thus we will introduce a sequence 

xf ' ,  x~' ..... x L  

of (conditionally) iid random variables with common distribution 

Fn =rt-I  ~ ~x~ 
i=l 

where 6 denotes the Dirac measure. This means that we draw a random 
sample with replacement from X~ .... , X,,. As mentioned in Section 1, the 
ergodic theorem implies that F,, converges weakly to F for almost all 
sample paths of (X+) so that F,, is "close" to F. We also have that 

P*(IX*-X*I ~<~)= I dF,,(x)dF.(y) 
Ix- yl ~<e 

= C , , ( 8 )  

--+ C(e) = P ( [ X -  YI ~ 8) = Iix_.,.i-<~ dF(x)  dF(y)  

with probability one. Here 

P * ( . ) = P ( . I X ~ ,  X2 .... ) 

We conclude that if C(e) has power law behavior at zero, C,,(e) has 
approximately the same behavior. 
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Now we apply the idea of Hill estimation from Section 2 to the new 
sample (X*) and define 

where 

and 

1 m ) - l 
H,,*,, = \ - -  m ~.= log Z~,. I + log Z(*,, + 1) 

zi* = I X ~ -  x~;_ 11, i = 1  ..... n 

Z ~ l l ~ " "  ~ * ..~ Z(,) 

denote the corresponding order statistics. For  m and F, fixed we can repeat 
the above construction for independent samples of the Z*  as often as we 
wish (at least theoretically), say B times. Then we get a vector of B (condi- 
tionally) iid random variables. We can construct its empirical distribution, 
calculate its mean value, variance, etc., and determine confidence intervals. 

The arguments for this Monte Carlo method are heuristic ones. We 
will show via simulations in Section 4 that the method works with a 
reasonable quality. 

4. S O M E  S I M U L A T I O N  S T U D I E S  

In this section we provide some simulation examples of both inde- 
pendent and strongly dependent data. As mentioned in Section 1, we start 
with a one-dimensional sequence X~, X2 .... which is supposed to be 
stationary and ergodic. For  d>~ 1 fixed we embed the sequence in a 
d-dimensional phase space: 

with marginal 
exponent 

X i =  (Xi ..... Xi+a-l), i = 1  ..... n 

distribution F. We also suppose that the correlation 

D = D(d) = lim log C(e) 
~ o log 

exists. We will say that (Xi) or F has correlation dimension D if the D(d) 
assume the constant value D for sufficiently large d. 

As described in Section 3, we construct the estimators H*, for a fixed 
sample of size n and a given value m. We repeat here the algorithm: 

�9 F rom the original sample X~ ..... X,  draw a random sample (with 
replacement): X* ..... X*,,. 

�9 Form the set of n distances Z* = IX*k-X*~_ 11. 
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�9 Take the order statistics Z~'j) ..... Z~*,) from the set of n distances Z~. 

�9 Calculate the corresponding Hill estimate H * ,  from the values 
Z~) ..... Z~',. + ,~. 

�9 Repeat this procedure 1000 times independently and average over 
the 1000 values of the Hill estimates to obtain the final estimate for 
the correlation exponent D(d). 

For fixed m, the 1000 values of Hill estimates generate an empirical 
distribution function with mean value which coincides with our proposed 
Monte Carlo estimate of D(d). This allows for the construction of 
confidence intervals around the estimate. The number of 1000 replications 
is very high; simulations show that 200 or 300 are already enough for a 
stable estimation. 

Example 1. The Lorenz Map. We consider a realization (X~) of the 
Lorenz map (e.g., Smith tt8)) with sample size n = 105. It is known that this 
system has correlation dimension 2.05. We compare the quality of the 
Grassberger-Procaccia method and of the averaged estimators * H,,,,. Both 
estimators slightly underestimate the true value even for higher dimensions 
d. The Hill-type estimator outperforms the linear regression estimator 
slightly. 

We see from Fig. 1 that the estimator H,*,, yields reasonable results in 
a sufficiently broad region of m values. It is our experience that the 
estimator provides the best results for m between n ~/3 and n 2/3, which is 
motivated by the conditions m=m(n)--*oo but m=o(n). The Hill 
estimator overcomes the problem with the choice of the linear e region in 
the Grassberger-Procaccia method. On the other hand, we have now to 
choose a reasonable value of m. Analogously to the Grassberger-Procaccia 
method, we propose to plot H,*, against a variety of m values and then to 
choose an m from a region where the graph of the curve is almost parallel 
to the x axis or to average over this region of H,,*, values. 

The Grassberger-Procaccia method and the Hill estimator yield very 
similar results (see Fig. 1). An advantage of the Monte Carlo procedure for 
the Hill estimator is that it yields an empirical distribution of the 1000 
generated H,,*, values for fixed m. Thus one can construct confidence bands 
from this distribution. Since we were not able to prove the consistency of 
the method under general dependence conditions, these confidence inter- 
vals have to be handled with care. 

We also mention that these confidence bands are comparable with the 
Hill estimate in the iid situation where one uses a normal approximation. 
In particular, in all our examples, for m fixed, the empirical distribution 
function of the H,,*, values is close to a normal distribution (see also 
Fig. 4). 
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Fig. I. Lorenz map: The averaged estimator of the 1000 H*,,, (y axis) for m between 50 and 
300 (x axis) and with phase space dimensions d =  1 ..... 6. The bullets show the estimates (for 
the same sample) of D(d) obtained by the Grassberger-Procaccia method. The correlation 
dimension is 2.05. 

o 

co 
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0 500 1000 1500 2000 

Fig. 2. Cantor set: The averaged estimator of the 1000 H*,, (solid line) (y axis) for m 
between 100 and 2000 (x axis) and with phase space dimension d =  1. For each m the dotted 
lines give a 95% confidence interval around the estimated mean value. The true value is 
0.6309298. 
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E x a m p l e  2. The Cantor Distribution. Let Co denote the standard 
Cantor set in [0,1] (Fig. 2). A dynamical system can be constructed by the 
ternary shift map T(x )=  3x (mod l) where the initial value is selected 
randomly and uniformly from Co. We suppose that (Xi) is a realisation of 
the shift map, hence d =  1. The sample size is n--104. It is known that 
D = D(1 ) = log 2/log 3 = 0.6309298 (e.g., Cutler~ 

For comparison we consider the corresponding linear regression 
approach. In Fig. 3 we plot log C,,(e) against log e for a variety of e values 
and for n = 104 values X~. Linear regression in the log e region [ - -  15, - 2 ]  
yields an estimate of 0.631 for D = D(1). This precision is quite striking. 

We might ask why the Hill estimate seems less effective than the 
linear regression estimator. To understand this phenomenon we go back to 
Argument B in Section 2 (we also use the same notation): The Hill 
estimate is motivated by the relation 

I ~ 1 - G ( t u )  du I ~176 -z~du 1 
- * u - - = ~ ,  t ~ o o  ( 4 . 1 )  

, -1-G- Ty ,, l ,, 

which holds if 1 - G ( y ) = P ( Z ~ l / y ) = L ( y ) y  - ~  for a slowly varying 
function L. However, the situation for the Cantor set is different. In this 
case calculation shows that 1 - G(y) = y-Dg(log y) for a positive, periodic, 
continuous function g which is bounded from below and from above by 
positive constants and such that g(k log 3) = 1 for nonnegative integers k. 
(This fact and the following argument we learnt from David Vere-Jones.) 

"2 

/ / :  

Fig. 3. 

-30 -25 -20 -15 -10 -5 0 

Cantor set: Plot of log Clo,(e) (y axis) against Ioge (.v axis) for e~ [e -30, e -2"] for the 
random Cantor set. 
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0 55 0 60 065 070 0 75 

Fig. 4. Cantor set: The probability density function of the vector of the 1000 H*., (solid line) 
(y axis) in the interval [0.5, 0.75] (x axis) for m = 200. The dotted line is the normal density 
function with the same mean value and variance as the vector of the H*,,. 

In this case, the Hill est imate for different m will reflect ("est imate")  the 
" lacunary"  behavior  of 

f 
o~ u - ~  g(log(tu)) du 

1 g( log(u))  u 

as a function of t. This explains the oscil lat ions of the es t imat ion curve in 
Fig. 2. The Grassbe rge r -P rocacc ia  es t imator  yields such a precise value 
since it can be based on a wide span of e values which is possible by the 
self-similarity of this example.  A similar value could be obta ined  for Hill 
es t imat ion by appropr ia te ly  averaging over a range of Hill est imates for a 
region of m values. 

Final ly,  in Fig. 4 we i l lustrate the concentra t ion  of the 1000 s imulated 
H,*,, around  the true value log 2/log 3 by its probabi l i ty  density ( smoothed 
histogram).  

E x a m p l e  3. IID Noise. The (2";) are iid with a s tandard  Gauss ian  
distr ibut ion.  Theoretical ly,  D ( d ) = d .  In Fig. 5 we show the influence of 
both  the sample size n (x axis) and the phase space dimension d (y  axis) 
on the es t imat ion of D(d)  (z axis). The sample size is increased in 20 steps 
by 5000 from 5000 to 105 . The est imates are again taken as an average over 
1000 realizat ions of * Hmn �9 

In Fig. 6 we fix the sample n = 10 5 and consider  the dependence of 
the es t imator  on the phase space dimension d. F o r  d >  5 the es t imator  
is systematical ly biased. The bias is caused by the fact that  different 
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" 5 
2 - 

Fig. 5. l i D  Gaussian noise: The averaged estimator of the I000 H* , ,  (z axis) for m = 300 
with phase space dimensions d =  1 ..... 10 (y axis) for Gaussian standard white noise and with 
different sample size n = 5000, 10000, ..., 100000 (x axis). The numbers k on the x axis indicate 
the sample size n = k * 5000. The true values are D ( d )  = d. 

phase space dimensions d require different choices of e regions in the 
Grassberger-Procaccia method and, since e regions can be translated into m 
regions, this means for the Hill estimate that m has to be chosen in dependence 
on d as well. A detailed study of the relationship between e and m and their 
dependence on d is given by Harte (~) and Harte and Vere-Jones. (~2~ 

Fig. 6. 
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J 
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J 
J j t  
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z 
/ /  

/ 
/ /  

1 2 3 4 5 6 7 8 9 10 

IID Gaussian noise: The values of  the averaged estimator of the 1000 H*,. (y  axis) 
plotted against d (x axis) for d = 1 ..... 10 and n = 105, m = 300. 
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5. C O N C L U D I N G  R E M A R K S  

The Monte Carlo method described above arose from attempts to 
detect fractal dimensions from data sets of meteorological and seismic 
activity (see Vere-Jones et al.~2~ We compared the results with those from 
regression-type estimators. Our conclusions is that both methods deliver 
similar results given that the underlying model does not exhibit lacunary 
behavior as in the Cantor case (see Example 2 above). At the moment we 
do not know how to overcome this problem. However, we found it par- 
ticularly more satisfactory to work with the Monte Carlo method. In the 
regression approach one has to choose an e region for every data set in a 
specific way which depends very much on the observations. This requires 
plenty of skill and experience, even more if one applies correction techni- 
ques for "lifting up" the graph of C,,(e) for small e. 

The alternative Monte Carlo method proposes a way of directly 
estimating the correlation exponent. As pointed out before, one has to 
choose an appropriate m = o(n), but the rule that m is between n ~/3 and n 2/3 

works in our cases sufficiently well. Moreover, we propose to determine the 
Hill estimate simultaneously for a sequence of m values which corresponds 
to a region of e values. This makes Hill's estimate also more comparable 
with the Grassberger-Procaccia method, where one can take the whole 
region of e values into account. The method is easily realized on a com- 
puter which is equipped with one of the modern statistical packages (we 
used Splus and a SPARC station). The calculations are computer-intensive 
concerning memory and speed. But we do not consider this as a disadvan- 
tage for those who have access to powerful computer facilities. We would 
also like to mention that the method does not very much depend on the 
embedding dimension d, since we only deal with the scalar quantities Z*. 

The Monte Carlo version of the Hill estimate cannot be expected to 
be a precise point estimate; bootstrap methods in general increase the 
variability of the estimator in order to get an empirical distribution func- 
tion (that is the original motivation for the bootstrap). Thus the Monte 
Carlo method delivers a confidence bound around the estimated value. 
This is difficult to derive for the Grassberger-Procaccia method, although 
also for this approach statistical error estimates are known. 13~ They require 
a special dependence structure (mixing) of the observations and knowledge 
about the covariance structure of the C,,(e) for different e. This is hard to 
check in reality. 

Our arguments for the Hill estimate are of heuristic nature. They are 
based on the fact that the Hill estimate for iid observations is the best 
available tail estimate in the sense of maximum-likelihood estimation 
and also the commonly used tail estimate in statistics. However, we are 

822/78/3-4-10 



812 Mikosch and Wang 

aware  of the problems which arise from dependent  data,  even if they are 
randomized  in the above  way. 

We ment ion that  Har te  t11) and Har te  and Vere-Jones ~21 informed us 
that  they have made  progress in the s tudy of the re la t ionship between the 
choice of e (in regression est imates)  and m (in Hill 's  est imate).  They also 
propose  bias correct ions to the Hill procedure  which are basically weighted 
Hill (i.e., kernel- type)  estimates,  and they s tudy the influence of roundoff  
effects (which are inherent  to any real da ta  set) on the es t imat ion of fractal 
dimensions.  
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